Direct observation of morphological evolution of a catalyst during carbon nanotube forest growth: new insights into growth and growth termination.
نویسندگان
چکیده
In this study, we develop a new methodology for transmission electron microscopy (TEM) analysis that enables us to directly investigate the interface between carbon nanotube (CNT) arrays and the catalyst and support layers for CNT forest growth without any damage induced by a post-growth TEM sample preparation. Using this methodology, we perform in situ and ex situ TEM investigations on the evolution of the morphology of the catalyst particles and observe the catalyst particles to climb up through CNT arrays during CNT forest growth. We speculate that the lifted catalysts significantly affect the growth and growth termination of CNT forests along with Ostwald ripening and sub-surface diffusion. Thus, we propose a modified growth termination model which better explains various phenomena related to the growth and growth termination of CNT forests.
منابع مشابه
Kinetic modeling of the SWNT growth by CO disproportionation on CoMo catalysts.
A kinetic model has been developed to describe the growth of single-walled carbon nanotubes (SWNT) in the CoMoCAT method, which is based on the disproportionation of CO on supported CoMo catalysts. The model attempts to capture mathematically the different stages involved in this method: (i) catalyst activation or in-situ creation of active sites, i.e., reduced Co clusters by transformation of ...
متن کاملOptimized Conditions for Catalytic Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes
Here, we have synthesized vertically aligned carbon nanotubes (VA-CNTs), using chemical vapor deposition (CVD) method. Cobalt and ethanol are used as the catalyst and the carbon source, respectively. The effects of ethanol flow rate, thickness of Co catalyst film, and growth time on the properties of the carbon nanotube growth are investigated. The results show that the flow rate of ethanol and...
متن کاملEngineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst.
We study synthesis of vertically aligned carbon nanotube (CNT) "forests" by a decoupled method that facilitates control of the mean diameter and structural quality of the CNTs and enables tuning of the kinetics for efficient growth to forest heights of several millimeters. The growth substrate temperature (T(s)) primarily determines the CNT diameter, whereas independent and rapid thermal treatm...
متن کاملNumerical Study of Operating Pressure Effect on Carbon Nanotube Growth Rate and Length Uniformity
Chemical Vapor Deposition (CVD) is one of the most popular methods for producing Carbon Nanotubes (CNTs). The growth rate of CNTs based on CVD technique is investigated by using a numerical model based on finite volume method. Inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as carrier gas enters into a horizontal CVD reactor at atmospheric pressure. In thi...
متن کاملStudy of the growth of conductive single-wall carbon nanotube films with ultra-high transparency
We report a study of the growth of conductive single-wall carbon nanotube (SWCNT) films with ultrahigh transparency (typically above 98% at 550 nm wavelength) on quartz substrates. Ferritin was used as the catalyst precursor and ethanol as the carbon feed. The effects of experimental parameters on film structure and performance have been investigated. Catalyst concentration and pre-annealing of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 8 4 شماره
صفحات -
تاریخ انتشار 2016